LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of time of flight and resolution modeling on image quality in positron emission tomography

Photo by usgs from unsplash

Abstract Time‐of‐flight (TOF) and resolution modeling (RM) algorithms are frequently used in clinical PET images, and inclusion of these corrections should measurably improve image quality. We quantified the effects of… Click to show full abstract

Abstract Time‐of‐flight (TOF) and resolution modeling (RM) algorithms are frequently used in clinical PET images, and inclusion of these corrections should measurably improve image quality. We quantified the effects of these correction algorithms on reconstructed images via the following metrics: recovery coefficients (RCs), contrast‐to‐noise ratio (CNR), noise‐power spectrum (NPS), modulation transfer function (MTF), and the full width at half maximum (FWHM) of a point source. The goal of this experiment was to assess the effects of the correction algorithms when applied singly or together. Two different phantom tests were performed and analyzed by custom software. FWHM and MTF were measured using capillary tube point sources, while RCs, CNR, and NPS were measured using an image quality body phantom. Images were reconstructed with both TOF and RM, only TOF, only RM, or neither correction. The remaining reconstruction parameters used the standard clinical protocol. RM improved RCs, FWHM, and MTF, without increasing overall noise significantly. TOF improves CNR for small objects FWHM or MTF but did not decrease noise. RCs were not statistically improved by enabling these algorithms. Inclusion of both correction algorithms in image reconstruction provides an overall improvement to all metrics relative to the uncorrected image, but not by a significant margin in multiple aspects.

Keywords: image quality; resolution modeling; image; time flight

Journal Title: Journal of Applied Clinical Medical Physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.