LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biomimetic Microgels with Controllable Deformability Improve Healing Outcomes

Photo from wikipedia

Platelets mediate hemostasis by aggregating and binding to fibrin to promote clotting. Over time, platelets contract the fibrin network to induce clot retraction, which contributes to wound healing outcomes by… Click to show full abstract

Platelets mediate hemostasis by aggregating and binding to fibrin to promote clotting. Over time, platelets contract the fibrin network to induce clot retraction, which contributes to wound healing outcomes by increasing clot stability and improving blood flow to ischemic tissue. In this study, the development of hollow platelet‐like particles (PLPs) that mimic the native platelet function of clot retraction in a controlled manner is described and it is demonstrated that clot retraction‐inducing PLPs promote healing in vivo. PLPs are created by coupling fibrin‐binding antibodies to CoreShell (CS) or hollow N‐isopropylacrylamide (NIPAm) microgels with varying degrees of shell crosslinking. It is demonstrated that hollow microgels with loosely crosslinked shells display a high degree of deformability and mimic activated platelet morphology, while intact CS microgels and hollow microgels with increased crosslinking in the shell do not. When coupled to a fibrin‐binding antibody to create PLPs, hollow particles with low degrees of shell crosslinking cause fibrin clot collapse in vitro, recapitulating the clot retraction function of platelets, while other particle types do not. Furthermore, hollow PLPs with low degrees of shell crosslinking improve some wound healing outcomes in vivo.

Keywords: clot; clot retraction; degrees shell; healing outcomes; deformability

Journal Title: Advanced Biosystems
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.