Wound healing is a complex process involving diverse changes in multiple cell types where the application of electric fields has been shown to accelerate wound closure. To define the efficacy… Click to show full abstract
Wound healing is a complex process involving diverse changes in multiple cell types where the application of electric fields has been shown to accelerate wound closure. To define the efficacy of therapies based on electric fields, it would be valuable to have a platform to systematically study the effects of electrical stimulation (ES) upon the inflammation phase and the activation of signaling mediators. Here, an in vivo ES model in which flexible electrodes are applied to an animal model for monitoring inflammation in a wound is reported on. Subcutaneous implants of polyvinyl alcohol sponges elicit inflammation response as defined by the infiltration of leukocytes. The wound site is subjected to electric fields using two types of additively fabricated flexible electrode arrays. The sponges are then harvested for flow cytometry analysis to identify changes in the phosphorylation state of intracellular targets. This platform enables studies of molecular mechanisms, as it shows that an application of low‐frequency ES ≤0.5 Hz increases phosphorylation of Erk proteins in recruited leukocytes, identifying a signaling pathway that is activated during the healing process.
               
Click one of the above tabs to view related content.