LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Laser Driven Miniature Diamond Implant for Wireless Retinal Prostheses

Photo by nci from unsplash

The design and benchtop operation of a wireless miniature epiretinal stimulator implant is reported. The implant is optically powered and controlled using safe illumination at near‐infrared wavelengths. An application‐specific integrated… Click to show full abstract

The design and benchtop operation of a wireless miniature epiretinal stimulator implant is reported. The implant is optically powered and controlled using safe illumination at near‐infrared wavelengths. An application‐specific integrated circuit (ASIC) hosting a digital control unit is used to control the implant's electrodes. The ASIC is powered using an advanced photovoltaic (PV) cell and programmed using a single photodiode. Diamond packaging technology is utilized to achieve high‐density integration of the implant optoelectronic circuitry, as well as individual connections between a stimulator chip and 256 electrodes, within a 4.6 mm × 3.7 mm × 0.9 mm implant package. An ultrahigh efficiency PV cell with a monochromatic power conversion efficiency of 55% is used to power the implant. On‐board photodetection circuity with a bandwidth of 3.7 MHz is used for forward data telemetry of stimulation parameters. In comparison to implants which utilize inductively coupled coils, laser power delivery enables a high degree of miniaturization and lower surgical complexity. The device presented combines the benefits of implant miniaturization and a flexible stimulation strategy provided by a dedicated stimulator chip. This development provides a route to fully wireless miniaturized minimally invasive implants with sophisticated functionalities.

Keywords: laser driven; driven miniature; implant wireless; diamond implant; diamond; miniature diamond

Journal Title: Advanced Biosystems
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.