A series of monolithic porous Au with different pore sizes are successfully synthesized by a facile template-dealloying corrosion method. Spherical Cu particles are employed as sacrificial templates, and a FeCl3–HNO3… Click to show full abstract
A series of monolithic porous Au with different pore sizes are successfully synthesized by a facile template-dealloying corrosion method. Spherical Cu particles are employed as sacrificial templates, and a FeCl3–HNO3 two-step corrosion method is developed to dissolve the Cu components. The microstructure and phase evolution, as well as the effect of the corrosive media, are investigated in this study. As a result, the prepared monolithic porous Au possesses ultra-low density and a special hollow porous core-shell structure. When a small-sized template (≈1 μm) is adopted, the corresponding density is as low as 0.37 g cm−3 (1.8% of the full density of Au). In addition, due to the special structure, the monolithic porous Au exhibits good catalytic performance (Kapp = 0.43 min−1), that is, relatively higher than that of most traditional Au-based powder/slurry materials.
               
Click one of the above tabs to view related content.