LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fatigue and Fracture Reliability of Shell‐Mimetic PE/TiO2 Nanolayered Composites

Photo by thanasis_p from unsplash

Shell-mimetic (PE/TiO2)4 nanolayered composites stacked alternatively by 20 nm-thick PE layers and 55 nm-thick nanocrystalline TiO2 layers are synthesized by a combination of the layer-by-layer self-assembly and the chemical bath deposition methods.… Click to show full abstract

Shell-mimetic (PE/TiO2)4 nanolayered composites stacked alternatively by 20 nm-thick PE layers and 55 nm-thick nanocrystalline TiO2 layers are synthesized by a combination of the layer-by-layer self-assembly and the chemical bath deposition methods. The critical cracking strain and the apparent fracture energy of the bio-mimetic nanolayered composites are determined as 0.56% and 0.98 J m−2, respectively, by the simply supported beam bending testing. Fatigue properties of the (PE/TiO2)4 nanolayered composites are evaluated by the dynamic bending testing method. The critical fatigue strain amplitude corresponding to the lowest strain amplitude for fatigue cracking of the present (PE/TiO2)4 NLCs is 0.0853%, which is much lower than the critical cracking strain (0.56%) under monotonic bending. The finding indicates that the potential fatigue threat to the long-term reliability of the bio-mimetic nanolayered composites needs to be concerned.

Keywords: tio2; mimetic tio2; nanolayered composites; tio2 nanolayered; strain; shell mimetic

Journal Title: Advanced Engineering Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.