LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of Microstructural Features on the Strain Hardening Behavior of Additively Manufactured Metallic Components

Photo by timmossholder from unsplash

Additive manufacturing (AM) has recently become one of the key manufacturing processes in the era of Industry 4.0 because of its highly flexible production scheme. Due to complex thermal cycles… Click to show full abstract

Additive manufacturing (AM) has recently become one of the key manufacturing processes in the era of Industry 4.0 because of its highly flexible production scheme. Due to complex thermal cycles during the manufacturing process itself and special solidification conditions, the microstructure of AM components often exhibits elongated grains together with a pronounced texture. These microstructural features significantly contribute to an anisotropic mechanical behavior. In this work, the microstructure and mechanical properties of additively manufactured samples of 316L stainless steel are characterized experimentally and a micromechanical modeling approach is employed to predict the macroscopic properties. The objective of this work is to study the effects of texture and microstructural morphology on yield strength and strain hardening behavior of faceā€centered cubic additively manufactured metallic components. To incorporate the texture in synthetic representative volume elements (RVE), the proposed approach considers both the crystallographic and grain boundary textures. The mechanical behavior of these RVEs is modeled using crystal plasticity finite element method, which incorporates size effects through the implementation of strain gradients.

Keywords: manufactured metallic; additively manufactured; microstructural features; strain hardening; behavior; hardening behavior

Journal Title: Advanced Engineering Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.