LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Cu on Amorphization of a TiNi Alloy during HPT and Shape Memory Effect after Post‐Deformation Annealing

Photo by matreding from unsplash

A ternary TiNiCu memory alloy was subjected to high‐pressure torsion (HPT) followed by post‐deformation annealing (PDA) to study the effect of Cu (5 at%) on amorphization after HPT processing and… Click to show full abstract

A ternary TiNiCu memory alloy was subjected to high‐pressure torsion (HPT) followed by post‐deformation annealing (PDA) to study the effect of Cu (5 at%) on amorphization after HPT processing and also the microstructural evolution and shape memory effect (SME) after PDA. The results show that even after 20 revolutions the ternary alloy contains nanocrystalline areas and the microstructure is not fully amorphous. An easier martensite to austenite transformation and minor remaining austenite in the ternary alloy are responsible for suppressing amorphization. PDA at 673 K provides nanocrystalline microstructures containing an R‐phase with a minor martensitic B19' phase in the ternary alloy. The SME of this alloy after PDA is not as satisfactory as for the binary alloy processed through similar conditions because of the existence of a high volume fraction of the R‐phase. Nevertheless, the total recovered strain of the ternary alloy after PDA for 30 min has a maximum value of 6.5%.

Keywords: alloy; hpt; pda; amorphization; effect; memory

Journal Title: Advanced Engineering Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.