LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Creep Resistance of an Ultrafine‐Grained Ti–6Al–4V Alloy with Modified Surface by Ion Implantation and (Ti + V)N Coating

Photo by matreding from unsplash

This research examines the creep behavior of an ultrafine‐grained (UFG) Ti−6Al−4V alloy processed by equal‐channel angular pressing followed by extrusion. It is shown that modifying the surface of the UFG… Click to show full abstract

This research examines the creep behavior of an ultrafine‐grained (UFG) Ti−6Al−4V alloy processed by equal‐channel angular pressing followed by extrusion. It is shown that modifying the surface of the UFG alloy with nitrogen ions and then applying of a coating of (Ti + V)N inhibits the softening of the UFG alloy at temperatures up to 700 K due to a barrier effect in which the coating hinders the release of dislocations onto the surface. The differences in the mechanisms of crack initiation and failure of UFG samples are also examined both with and without a coating. The prospects of the proposed approach to the improving of titanium alloys are discussed, including the formation of an UFG structure in the bulk of the material and subsequent modification by ion‐plasma methods for the manufacture of highly loaded parts operating at elevated operating temperatures.

Keywords: 6al alloy; ion; enhanced creep; alloy; ultrafine grained

Journal Title: Advanced Engineering Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.