Deformation behavior of an Al–Cu–Mn–Fe–Zr alloy is investigated by plane strain compression tests at a warm deformation region. The flow stress first increases and then keeps steady, and the flow… Click to show full abstract
Deformation behavior of an Al–Cu–Mn–Fe–Zr alloy is investigated by plane strain compression tests at a warm deformation region. The flow stress first increases and then keeps steady, and the flow stress increases with reducing temperature or raising strain rate. However, the influence of strain rate on flow stress is weak at 100 and 150 °C. The dynamic recovery (DRV) mechanism is the dominant mechanism to balance the work hardening, and a larger number of dislocations are consumed at low strain rates. So, the deformed grains are difficult to reach the critical strain for dynamic recrystallization (DRX). When the strain rate is relatively high, the critical strain can be reached in a short time, which promotes the process of DRX. In addition, an improved unified constitutive model is built based on the evolution of dislocation density. The predicted flow stresses are in a close agreement with the measured results, proving that the built model can nicely reproduce the flow behavior.
               
Click one of the above tabs to view related content.