LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational Screening of Single Atoms Anchored on Defective Mo 2 CO 2 MXene Nanosheet as Efficient Electrocatalysts for the Synthesis of Ammonia

Photo by timmykp from unsplash

The electrochemical nitrogen reduction reaction (NRR) over single-atom catalysts (SACs) anchored on Mo vacancies of Mo 2CO 2 MXene nanosheets under ambient conditions suffers from poor selectivity, low yield, and… Click to show full abstract

The electrochemical nitrogen reduction reaction (NRR) over single-atom catalysts (SACs) anchored on Mo vacancies of Mo 2CO 2 MXene nanosheets under ambient conditions suffers from poor selectivity, low yield, and low Faradaic efficiency because of their sluggish kinetics and the competing hydrogen evolution reaction. Herein, density functional theory calculations are performed to improve the understanding of the selectivity and yielding of ammonia through NRR over various isolated SACs, that is, from Sc to Au, anchored on the Mo vacancy of the Mo 2CO 2 MXene nanosheet (denoted as MO 2CO 2-M SA). The potential-determining step of the NRR shows that eight candidates (i.e., Y, Zr, Nb, Hf, Ta, W, Re, and Os) confined on the defective Mo 2CO 2 layer could promote the electroreduction from N 2 to NH 3. Among these, Mo 2CO 2-Y SA presented the lowest reported reaction Presents the lowest reported reaction energy barrier (0.08 eV) through the distal pathway and high selectivity to NRR compared with the previously synthesized Mo 2CO 2-Ru SA with a relatively high energy barrier (0.65 eV) and poor selectivity. In addition, the formation energy of Mo 2CO 2-Y SA is more negative than that of the Mo 2CO 2-Ru SA catalyst, suggesting that the experimental preparation of the Mo 2CO 2-Y SA catalyst is highly feasible. This work lays a solid foundation for improving the rational design of MXene-based systems as efficient electrocatalysts for the synthesis of ammonia.

Keywords: efficient electrocatalysts; electrocatalysts synthesis; reaction; mxene nanosheet; synthesis ammonia; mxene

Journal Title: Advanced Engineering Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.