LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlled Microfabrication of High-Aspect-Ratio Structures in Silicon at the Highest Etching Rates: The Role of H2O2 in the Anodic Dissolution of Silicon in Acidic Electrolytes

Photo from wikipedia

In this work the authors report on the controlled electrochemical etching of high-aspect-ratio (from 5 to 100) structures in silicon at the highest etching rates (from 3 to 10 µm… Click to show full abstract

In this work the authors report on the controlled electrochemical etching of high-aspect-ratio (from 5 to 100) structures in silicon at the highest etching rates (from 3 to 10 µm min−1) at room temperature. This allows silicon microfabrication entering a previously unattainable region where etching of high-aspect-ratio structures (beyond 10) at high etching rate (over 3 µm min−1) was prohibited for both commercial and research technologies. Addition of an oxidant, namely H2O2, to a standard aqueous hydrofluoric (HF) acid electrolyte is used to dramatically change the stoichiometry of the silicon dissolution process under anodic biasing without loss of etching control accuracy at the higher depths (up to 200 µm). The authors show that the presence of H2O2 reduces the valence of the dissolution process to 1, thus rendering the electrochemical etching more effective, and catalyzes the etching rate by opening a more efficient path for silicon dissolution with respect to the well-known Gerischer mechanism, thus increasing the etching speed at both shorter and higher depths.

Keywords: dissolution; high aspect; aspect ratio; silicon

Journal Title: Advanced Functional Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.