LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Materials and Device Designs for an Epidermal UV Colorimetric Dosimeter with Near Field Communication Capabilities

Photo from wikipedia

Ultraviolet (UV) solar radiation is a leading cause of skin disease. Quantitative, continuous knowledge of exposure levels can enhance awareness and lead to improved health outcomes. Devices that offer this… Click to show full abstract

Ultraviolet (UV) solar radiation is a leading cause of skin disease. Quantitative, continuous knowledge of exposure levels can enhance awareness and lead to improved health outcomes. Devices that offer this type of measurement capability in formats that can seamlessly integrate with the skin are therefore of interest. This paper introduces materials, device designs, and data acquisition methods for a skin-like, or “epidermal,” system that combines colorimetric and electronic function for precise dosimetry in the UV-A and UV-B regions of the spectrum, and for determination of instantaneous UV exposure levels and skin temperature. The colorimetric chemistry uses (4-phenoxyphenyl)diphenylsulfonium triflate (PPDPS-TF) with crystal violet lactone (CVL) and Congo red for UV-A and UV-B operation, respectively, when integrated with suitable optical filters. Coatings of poly(ethylene-vinylacetate) (PEVA) protect the functional materials from sunscreen and other contamination. Quantitative information follows from automated L*a*b* color space analysis of digital images of the devices to provide accurate measurements when calibrated against standard nonwearable sensors. Techniques of screen printing and lamination allow aesthetic designs and integration with epidermal near field communication platforms, respectively. The result is a set of attractive technologies for managing UV exposure at a personal level and on targeted regions of the body.

Keywords: field communication; near field; device designs; materials device

Journal Title: Advanced Functional Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.