Encapsulating hydrophilic chemotherapeutics into the core of polymeric nanoparticles can improve their therapeutic efficacy by increasing their plasma half-life, tumor accumulation and intracellular uptake, and by protecting them from premature… Click to show full abstract
Encapsulating hydrophilic chemotherapeutics into the core of polymeric nanoparticles can improve their therapeutic efficacy by increasing their plasma half-life, tumor accumulation and intracellular uptake, and by protecting them from premature degradation. To achieve these goals, we designed a recombinant asymmetric triblock polypeptide (ATBP) that self-assembles into rod-shaped nanoparticles, and which can be used to conjugate diverse hydrophilic molecules, including chemotherapeutics, into their core. These ATBPs consist of three segments: a biodegradable elastin-like polypeptide, a hydrophobic Tyrosine-rich segment, and a short Cysteine-rich segment, that spontaneously self-assemble into rod-shaped micelles. Covalent conjugation of a structurally diverse set of hydrophilic small molecules, including a hydrophilic chemotherapeutic -gemcitabine- to the Cysteine residues also leads to formation of nanoparticles over a range of ATBP concentrations. Gemcitabine-loaded ATBP nanoparticles have significantly better tumor regression compared to free drug in a murine cancer model. This simple strategy of encapsulation of hydrophilic small molecules by conjugation to an ATBP can be used to effectively deliver a range of water-soluble drugs and imaging agents in vivo.
               
Click one of the above tabs to view related content.