LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-assembled Hydrogel Fiber Bundles from Oppositely Charged Polyelectrolytes Mimic Micro-/nanoscale Hierarchy of Collagen.

Photo by jareddrice from unsplash

Fiber bundles are present in many tissues throughout the body. In most cases, collagen subunits spontaneously self-assemble into a fibrilar structure that provides ductility to bone and constitutes the basis… Click to show full abstract

Fiber bundles are present in many tissues throughout the body. In most cases, collagen subunits spontaneously self-assemble into a fibrilar structure that provides ductility to bone and constitutes the basis of muscle contraction. Translating these natural architectural features into a biomimetic scaffold still remains a great challenge. Here, we propose a simple strategy to engineer biomimetic fiber bundles that replicate the self-assembly and hierarchy of natural collagen fibers. The electrostatic interaction of methacrylated gellan gum (MeGG) with a countercharged chitosan (CHT) polymer led to the complexation of the polyelectrolytes. When directed through a polydimethylsiloxane (PDMS) channel, the polyelectrolytes formed a hierarchical fibrous hydrogel demonstrating nano-scale periodic light/dark bands similar to D-periodic bands in native collagen and aligned parallel fibrils at micro-scale. Importantly, collagen-mimicking hydrogel fibers exhibited robust mechanical properties (MPa scale) at a single fiber bundle level and enabled encapsulation of cells inside the fibers under cell-friendly mild conditions. Presence of carboxyl- (in gellan gum) or amino- (in chitosan) functionalities further enabled controlled peptide functionalization such as RGD for biochemical mimicry (cell adhesion sites) of native collagen. This biomimetic aligned fibrous hydrogel system can potentially be used as a scaffold for tissue engineering as well as a drug/gene delivery vehicle.

Keywords: collagen; fiber bundles; self assembled; hydrogel fiber; assembled hydrogel

Journal Title: Advanced functional materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.