LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel Iron/Cobalt‐Containing Polypyrrole Hydrogel‐Derived Trifunctional Electrocatalyst for Self‐Powered Overall Water Splitting

Photo by a2eorigins from unsplash

Development of efficient, low-cost, and durable electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) is of significant importance for many electrochemical devices,… Click to show full abstract

Development of efficient, low-cost, and durable electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) is of significant importance for many electrochemical devices, such as rechargeable metal–air batteries, fuel cells, and water electrolyzers. Here, a novel approach for the synthesis of a trifunctional electrocatalyst derived from iron/cobalt-containing polypyrrole (PPy) hydrogel is reported. This strategy relies on the formation of a supramolecularly cross-linked PPy hydrogel that allows for efficient and homogeneous incorporation of highly active Fe/Co–N–C species. Meanwhile, Co nanoparticles are also formed and embedded into the carbon scaffold during the pyrolysis process, further promoting electrochemical activities. The resultant electrocatalyst exhibits prominent catalytic activities for ORR, OER, and HER, surpassing previously reported trifunctional electrocatalysts. Finally, it is demonstrated that the as-obtained trifunctional electrocatalyst can be used for electrocatalytic overall water splitting in a self-powered manner under ambient conditions. This work offers new prospects in developing highly active, nonprecious-metal-based electrocatalysts in electrochemical energy devices.

Keywords: hydrogel; electrocatalyst; water; trifunctional electrocatalyst; cobalt containing; iron cobalt

Journal Title: Advanced Functional Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.