LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

N‐, O‐, and S‐Tridoped Carbon‐Encapsulated Co9S8 Nanomaterials: Efficient Bifunctional Electrocatalysts for Overall Water Splitting

Photo by a2eorigins from unsplash

The development of highly active and stable earth-abundant catalysts to reduce or eliminate the reliance on noble-metal based ones in green and sustainable (electro)chemical processes is nowadays of great interest.… Click to show full abstract

The development of highly active and stable earth-abundant catalysts to reduce or eliminate the reliance on noble-metal based ones in green and sustainable (electro)chemical processes is nowadays of great interest. Here, N-, O-, and S-tridoped carbon-encapsulated Co9S8 (Co9S8@NOSC) nanomaterials are synthesized via simple pyrolysis of S- and Co(II)-containing polypyrrole solid precursors, and the materials are proven to serve as noble metal-free bifunctional electrocatalysts for water splitting in alkaline medium. The nanomaterials exhibit remarkable catalytic performances for oxygen evolution reaction in basic electrolyte, with small overpotentials, high anodic current densities, low Tafel slopes as well as very high (nearly 100%) Faradic efficiencies. Moreover, the materials are found to efficiently electrocatalyze hydrogen evolution reaction in acidic as well as basic solutions, showing high activity in both cases and maintaining good stability in alkaline medium. A two-electrode electrolyzer assembled using the material synthesized at 900 °C (Co9S8@NOSC-900) as an electrocatalyst at both electrodes gives current densities of 10 and 20 mA cm−2 at potentials of 1.60 and 1.74 V, respectively. The excellent electrocatalytic activity exhibited by the materials is proposed to be mainly due to the synergistic effects between the Co9S8 nanoparticles cores and the heteroatom-doped carbon shells in the materials.

Keywords: encapsulated co9s8; carbon; water splitting; bifunctional electrocatalysts; carbon encapsulated; tridoped carbon

Journal Title: Advanced Functional Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.