LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fe2O3 Nanoneedles on Ultrafine Nickel Nanotube Arrays as Efficient Anode for High‐Performance Asymmetric Supercapacitors

Photo by johannes_ortner from unsplash

High performance of electrochemical energy storage devices depends on the smart structure engineering of electrodes, including the tailored nanoarchitectures of current collectors and subtle hybridization of active materials. To improve… Click to show full abstract

High performance of electrochemical energy storage devices depends on the smart structure engineering of electrodes, including the tailored nanoarchitectures of current collectors and subtle hybridization of active materials. To improve the anode supercapacitive performance of Fe2O3 for high-voltage asymmetric supercapacitors, here, a hybrid core-branch nanoarchitecture is proposed by integrating Fe2O3 nanoneedles on ultrafine Ni nanotube arrays (NiNTAs@Fe2O3 nanoneedles). The fabrication process employs a bottom-up strategy via a modified template-assisted method starting from ultrafine ZnO nanorod arrays, ensuring the formation of ultrafine Ni nanotube arrays with ultrathin tube walls. The novel developed NiNTAs@Fe2O3 nanoneedle electrode is demonstrated to be a highly capacitive anode (418.7 F g−1 at 10 mV s−1), matching well with the similarly built NiNTAs@MnO2 nanosheet cathode. Contributed by the efficient electron collection paths and short ion diffusion paths in the uniquely designed anode and cathode, the asymmetric supercapacitors exhibit an excellent maximum energy density of 34.1 Wh kg−1 at the power density of 3197.7 W kg−1 in aqueous electrolyte and 32.2 Wh kg−1 at the power density of 3199.5 W kg−1 in quasi-solid-state gel electrolyte.

Keywords: asymmetric supercapacitors; fe2o3 nanoneedles; nanotube arrays; nanoneedles ultrafine; high performance

Journal Title: Advanced Functional Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.