LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multimodal Magnetic Nanoclusters for Gene Delivery, Directed Migration, and Tracking of Stem Cells

Photo by lauramayela99 from unsplash

This study develops multimodal magnetic nanoclusters (M-MNCs) for gene transfer, directed migration, and tracking of human mesenchymal stem cells (hMSCs). The M-MNCs are designed with 5 nm iron oxide nanoparticles… Click to show full abstract

This study develops multimodal magnetic nanoclusters (M-MNCs) for gene transfer, directed migration, and tracking of human mesenchymal stem cells (hMSCs). The M-MNCs are designed with 5 nm iron oxide nanoparticles and a fluorescent dye (i.e., Rhodamine B) in the matrix of the Food and Drug Administration approved polymer poly(lactide-co-glycolide) using a nanoemulsion method. The synthesized M-MNCs have a hydrodynamic diameter of ≈150 nm, are internalized by stem cells via endocytosis, and deliver genes with high efficiency. The cellular internalization and gene expression efficiency of the clustered nanoparticles are significantly higher than that of single nanoparticles. The M-MNC-labeled hMSCs migrate upon application of a magnetic force and can be visualized by both optical and magnetic resonance (MR) imaging. In animal models, the M-MNC-labeled hMSCs are also successfully tracked using optical and MR imaging. Thus, the M-MNCs not only allow the efficient delivery of genes to stem cells but also the tracking of cells in animal models. Taken together, the results show that this new type of nanocomposite can be of great help in future stem cell research and in the development of cell-based therapeutic agents.

Keywords: magnetic nanoclusters; multimodal magnetic; stem; gene; stem cells; directed migration

Journal Title: Advanced Functional Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.