LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CuF2 as Reversible Cathode for Fluoride Ion Batteries

Photo by roanlavery from unsplash

In the search for novel battery systems with high energy density and low cost, fluoride ion batteries have recently emerged as a further option to store electricity with very high… Click to show full abstract

In the search for novel battery systems with high energy density and low cost, fluoride ion batteries have recently emerged as a further option to store electricity with very high volumetric energy densities. Among metal fluorides, CuF2 is an intriguing candidate for cathode materials due to its high specific capacity and high theoretical conversion potential. Here, the reversibility of CuF2 as a cathode material in the fluoride ion battery system employing a high F− conducting tysonite-type La0.9Ba0.1F2.9 as an electrolyte and a metallic La as an anode is investigated. For the first time, the reversible conversion mechanism of CuF2 with the corresponding variation in fluorine content is reported on the basis of X-ray photoelectron spectroscopy measurements and cathode/electrolyte interfacial studies by transmission electron microscopy. Investigation of the anode/electrolyte interface reveals structural variation upon cycling with the formation of intermediate layers consisting of i) hexagonal LaF3 and monoclinic La2O3 phases in the pristine interface; ii) two main phases of distorted orthorhombic LaF3 and monoclinic La2O3 after discharging; and iii) a tetragonal lanthanum oxyfluoride (LaOF) phase after charging. The fading mechanism of the cell capacity upon cycling can be explained by Cu diffusion into the electrolyte and side reactions due to the formation of the LaOF compound.

Keywords: fluoride ion; cuf2 reversible; ion; ion batteries; reversible cathode

Journal Title: Advanced Functional Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.