LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self‐Compensation in Transparent Conducting F‐Doped SnO2

Photo from wikipedia

The factors limiting the conductivity of fluorine-doped tin dioxide (FTO) produced via atmospheric pressure chemical vapor deposition are investigated. Modeling of the transport properties indicates that the measured Hall effect… Click to show full abstract

The factors limiting the conductivity of fluorine-doped tin dioxide (FTO) produced via atmospheric pressure chemical vapor deposition are investigated. Modeling of the transport properties indicates that the measured Hall effect mobilities are far below the theoretical ionized impurity scattering limit. Significant compensation of donors by acceptors is present with a compensation ratio of 0.5, indicating that for every two donors there is approximately one acceptor. Hybrid density functional theory calculations of defect and impurity formation energies indicate the most probable acceptor-type defects. The fluorine interstitial defect has the lowest formation energy in the degenerate regime of FTO. Fluorine interstitials act as singly charged acceptors at the high Fermi levels corresponding to degenerately n-type films. X-ray photoemission spectroscopy of the fluorine impurities is consistent with the presence of substitutional F O donors and interstitial F i in a roughly 2:1 ratio in agreement with the compensation ratio indicated by the transport modeling. Quantitative analysis through Hall effect, X-ray photoemission spectroscopy, and calibrated secondary ion mass spectrometry further supports the presence of compensating fluorine-related defects.

Keywords: transparent conducting; self compensation; compensation; compensation transparent; spectroscopy; fluorine

Journal Title: Advanced Functional Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.