LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Functional Polysaccharide Sutures Prepared by Wet Fusion of Interfacial Polyelectrolyte Complexation Fibers

Photo from wikipedia

This study reports polysaccharide-based fibers that can be utilized as biocompatible functional sutures. Fibers are spontaneously formed by spinning at the interface between two oppositely charged polysaccharide solutions. Unlike the… Click to show full abstract

This study reports polysaccharide-based fibers that can be utilized as biocompatible functional sutures. Fibers are spontaneously formed by spinning at the interface between two oppositely charged polysaccharide solutions. Unlike the common belief that polysaccharide fibers prepared by electrostatic interactions would exhibit weak mechanical strength, it is demonstrated that fibers spun at the interface between two droplets of positively charged chitosan and negatively charged heparin can exhibit high mechanical strength through spontaneous wet-state fusion of interfiber strands at a spinning wheel. Dry solidification results in multistranded fibers that were ≈100 µm in diameter with a tensile strength of ≈220 MPa. Post fibrous manipulation yields various morphology with straight or twisted fibers, fabrics, or springs. To demonstrate application of the fiber, it is applied as a medical suture. As heparin has a unique ability to bind adeno-associated virus (AAV), a therapeutic, biocompatible suture exhibiting localized AAV-mediated gene delivery function can be prepared. This study shows that multistrand fusion of fibers, formed by weak, electrostatic interactions and followed by drying solidification counterintuitively results in mechanically strong, functional fibers with various potential applications.

Keywords: functional polysaccharide; prepared wet; polysaccharide sutures; sutures prepared; fusion; wet fusion

Journal Title: Advanced Functional Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.