LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D Self‐Supported Fe‐Doped Ni2P Nanosheet Arrays as Bifunctional Catalysts for Overall Water Splitting

Photo from wikipedia

The development of highly efficient bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for improving the efficiency of overall water splitting, but still… Click to show full abstract

The development of highly efficient bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for improving the efficiency of overall water splitting, but still remains challenging issue. Herein, 3D self-supported Fe-doped Ni2P nanosheet arrays are synthesized on Ni foam by hydrothermal method followed by in situ phosphorization, which serve as bifunctional electrocatalysts for overall water splitting. The as-synthesized (Ni0.33Fe0.67)2P with moderate Fe doping shows an outstanding OER performance, which only requires an overpotential of ≈230 mV to reach 50 mA cm−2 and is more efficient than the other Fe incorporated Ni2P electrodes. In addition, the (Ni0.33Fe0.67)2P exhibits excellent activity toward HER with a small overpotential of ≈214 mV to reach 50 mA cm−2. Furthermore, an alkaline electrolyzer is measured using (Ni0.33Fe0.67)2P electrodes as cathode and anode, respectively, which requires cell voltage of 1.49 V to reach 10 mA cm−2 as well as shows excellent stability with good nanoarray construction. Such good performance is attributed to the high intrinsic activity and superaerophobic surface property.

Keywords: self supported; doped ni2p; water splitting; overall water; supported doped

Journal Title: Advanced Functional Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.