Nanofabrication is an indispensable process in nanoscience and nanotechnology. Unconventional lithographic techniques are often used for fabrication as alternatives to photolithography because they are faster, more cost-effective, and simpler to… Click to show full abstract
Nanofabrication is an indispensable process in nanoscience and nanotechnology. Unconventional lithographic techniques are often used for fabrication as alternatives to photolithography because they are faster, more cost-effective, and simpler to use. However, these techniques are limited in scalability and utility because of the collapse of preprinted structures during step-and-repeat processes. This study proposes a new class of temperature-controllable polymeric molds that are coated with a metal such that any site-specific patterning can be accomplished in a programmable manner using selective contact-dewetting lithography. The lithography allows sub-100 nm patterning, step-and-repeat processing, and hierarchical structure fabrication. The programmable feature of the lithography can be utilized for the structural coloring and shaping of objects. Large-area programmable patterning, semiconductor device manufacturing, and the fabrication of iridescent security devices would benefit from the unique features of the proposed strategy.
               
Click one of the above tabs to view related content.