LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphology of a Ternary Blend Solar Cell Based on Small Molecule:Conjugated Polymer:Fullerene Fabricated by Blade Coating

Photo from wikipedia

Here, conjugated polymer is added as third component to tune the solution viscosity, morphology, and function of small molecule (SM) based bulk-heterojunction (BHJ) solar cells, which are fabricated using blade… Click to show full abstract

Here, conjugated polymer is added as third component to tune the solution viscosity, morphology, and function of small molecule (SM) based bulk-heterojunction (BHJ) solar cells, which are fabricated using blade coating. Novel information about the effect of blade coating speed on the nanoscale morphology and function of ternary blend solar cells is provided. The crystal sizes increase with an increase of coating speed for both binary and ternary blends, while the addition of the third component tends to favor smaller SM crystal grains and improves the connectivity of SM crystals. Small angle neutron scattering experiments provide the first clear experimental evidence that the addition of the third component would significantly impact the fullerene phase separation, which is crucial for bimolecular recombination and charge transport. It shows that for both binary and ternary blends, the concentration and sizes of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) aggregates increase with an increase of coating speed, while addition of third component does not affect the volume fraction of PCBM aggregates but impacts the size of PCBM aggregates. It is demonstrated that the judicious selection of blade coating speed and addition of conjugated polymer optimize the morphology of SM-BHJ, providing guidelines for high performance SM-BHJs from roll-to-roll production.

Keywords: blade; small molecule; blade coating; morphology; conjugated polymer; third component

Journal Title: Advanced Functional Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.