LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous Edge-on to Face-on Reorientation and 1D Alignment of Small π-Conjugated Molecules Using Room-Temperature Mechanical Rubbing

Photo from wikipedia

In this study, room-temperature mechanical rubbing is used to control the 3D orientation of small π-conjugated molecular systems in solution-processed polycrystalline thin films without using any alignment substrate. High absorption… Click to show full abstract

In this study, room-temperature mechanical rubbing is used to control the 3D orientation of small π-conjugated molecular systems in solution-processed polycrystalline thin films without using any alignment substrate. High absorption dichroic ratio and significant anisotropy in charge carrier mobilities (up to 130) measured in transistor configuration are obtained in rubbed organic films based on the ambipolar quinoidal quaterthiophene (QQT(CN)4). Moreover, a solvent vapor annealing treatment of the rubbed film is found to improve the optical and charge transport anisotropy due to an increased crystallinity. X-ray diffraction and atomic force microscopy measurements demonstrate that rubbing does not only lead to an excellent 1D orientation of the QQT(CN)4 molecules over large areas but also modifies the orientation of the crystals, moving molecules from an edge-on to a face-on configuration. The reasons why a mechanical alignment technique can be used at room temperature for such a polycrystalline film are rationalized, by the plastic characteristics of the QQT(CN)4 layer and the role of the flexible alkyl side chains in the molecular packing. This nearly complete conversion from edge-on to face-on orientation by mechanical treatment in polycrystalline small-molecule-based thin films opens perspectives in terms of fundamental research and practical applications in organic optoelectronics.

Keywords: mechanical rubbing; temperature mechanical; edge face; room temperature

Journal Title: Advanced Functional Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.