LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Direct Growth of Edge‐Rich Graphene with Tunable Dielectric Properties in Porous Si3N4 Ceramic for Broadband High‐Performance Microwave Absorption

Photo from wikipedia

High-performance graphene microwave absorption materials are highly desirable in daily life and some extreme situations. A simple technique for the direct growth of graphene as absorption fillers in wave-transmitting matrices… Click to show full abstract

High-performance graphene microwave absorption materials are highly desirable in daily life and some extreme situations. A simple technique for the direct growth of graphene as absorption fillers in wave-transmitting matrices is of paramount importance to bring it to real-world application. Herein, a simple chemical vapor deposition (CVD) route for the direct growth of edge-rich graphene (ERG) with tailored structures and tunable dielectric properties in porous Si3N4 ceramics using only methyl alcohol (CH3OH) as precursor is reported. The large O/C atomic ratio of CH3OH helps to build a mild oxidizing atmosphere and leads to a unique structure featuring open graphite nanosteps and freestanding nanoplanes, endowing the ERG/Si3N4 hybrid with an appropriate balance between good impedance matching and strong loss capacity. Accordingly, the prepared materials exhibit superior electromagnetic wave absorption, far surpassing that of traditional CVD graphene and reduced graphene oxide-based materials, achieving an effective absorption bandwidth of 4.2 GHz covering the entire X band, with a thickness of 3.75 mm and a negligibly low loading content of absorbents. The results provide new insights for developing novel microwave absorption materials with strong reflection loss and wide absorption frequency range.

Keywords: absorption; graphene; direct growth; microwave absorption; high performance

Journal Title: Advanced Functional Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.