LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Elucidating the Detectivity Limits in Shortwave Infrared Organic Photodiodes

Photo from wikipedia

While only few organic photodiodes have photoresponse past 1 µm, novel shortwave infrared (SWIR) polymers are emerging, and a better understanding of the limiting factors in narrow bandgap devices is… Click to show full abstract

While only few organic photodiodes have photoresponse past 1 µm, novel shortwave infrared (SWIR) polymers are emerging, and a better understanding of the limiting factors in narrow bandgap devices is critically needed to predict and advance performance. Based on state-of-the-art SWIR bulk heterojunction photodiodes, this work demonstrates a model that accounts for the increasing electric-field dependence of photocurrent in narrow bandgap materials. This physical model offers an expedient method to pinpoint the origins of efficiency losses, by decoupling the exciton dissociation efficiency and charge collection efficiency in photocurrent–voltage measurements. These results from transient photoconductivity measurements indicate that the main loss is due to poor exciton dissociation, particularly significant in photodiodes with low-energy charge-transfer states. Direct measurements of the noise components are analyzed to caution against using assumptions that could lead to an overestimation of detectivity. The devices show a peak detectivity of 5 × 1010 Jones with a spectral range up to 1.55 µm. The photodiodes are demonstrated to quantify the ethanol–water content in a mixture within 1% accuracy, conveying the potential of organics to enable economical, scalable detectors for SWIR spectroscopy.

Keywords: detectivity; shortwave infrared; limits shortwave; detectivity limits; organic photodiodes; elucidating detectivity

Journal Title: Advanced Functional Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.