LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of Bulky Organo‐Ammonium Halide Additive Choice on the Flexibility and Efficiency of Perovskite Light‐Emitting Devices

Photo by ale_s_bianchi from unsplash

Perovskite light-emitting diodes (LEDs) require small grain sizes to spatially confine charge carriers for efficient radiative recombination. As grain size decreases, passivation of surface defects becomes increasingly important. Additionally, polycrystalline… Click to show full abstract

Perovskite light-emitting diodes (LEDs) require small grain sizes to spatially confine charge carriers for efficient radiative recombination. As grain size decreases, passivation of surface defects becomes increasingly important. Additionally, polycrystalline perovskite films are highly brittle and mechanically fragile, limiting their practical applications in flexible electronics. In this work, the introduction of properly chosen bulky organo-ammonium halide additives is shown to be able to improve both optoelectronic and mechanical properties of perovskites, yielding highly efficient, robust, and flexible perovskite LEDs with external quantum efficiency of up to 13% and no degradation after bending for 10 000 cycles at a radius of 2 mm. Furthermore, insight of the improvements regarding molecular structure, size, and polarity at the atomic level is obtained with first-principles calculations, and design principles are provided to overcome trade-offs between optoelectronic and mechanical properties, thus increasing the scope for future highly efficient, robust, and flexible perovskite electronic device development.

Keywords: perovskite light; ammonium halide; bulky organo; organo ammonium; light emitting; perovskite

Journal Title: Advanced Functional Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.