LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pushing PbS/Metal‐Halide‐Perovskite Core/Epitaxial‐Ligand‐Shell Nanocrystal Photodetectors beyond 3 µm Wavelength

Photo from wikipedia

PbS nanocrystals have been proven to be highly suitable for photodetector fabrication by facile solution processing, and have been successfully tested as photosensitive material in imaging devices. So far, their… Click to show full abstract

PbS nanocrystals have been proven to be highly suitable for photodetector fabrication by facile solution processing, and have been successfully tested as photosensitive material in imaging devices. So far, their spectral response has been blue‐shifted with respect to that of commercial bulk PbS detectors, due to quantum confinement in nanostructures smaller than the exciton Bohr radius. Here, a PbS nanocrystal synthesis approach is introduced, allowing to surpass this limit, and thus to push the cut‐off wavelength to the value of the bulk material. To avoid self‐absorbance from ligands within the spectral range of the photoconducting signal, an all inorganic metal‐halide‐perovskite is applied to form a semiconducting ligand shell. The photoconductors, which are provided from a single drop, do not only show a record in long wavelength operation for PbS nanocrystal detectors but also a room temperature detectivity > 1010 Jones, which is on par with that of commercial bulk PbS detectors. Combining these properties might find application in future low‐cost infrared imagers, which are currently still elusive due to their high prices.

Keywords: metal halide; halide perovskite; wavelength; ligand shell; pbs

Journal Title: Advanced Functional Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.