LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Utilizing a Spiro TADF Moiety as a Functional Electron Donor in TADF Molecular Design toward Efficient “Multichannel” Reverse Intersystem Crossing

Photo by sakura0v0 from unsplash

Designing thermally activated delayed fluorescence (TADF) materials with an efficient reverse intersystem crossing (RISC) process is regarded as the key to actualize efficient organic light‐emitting diodes (OLEDs) with low efficiency… Click to show full abstract

Designing thermally activated delayed fluorescence (TADF) materials with an efficient reverse intersystem crossing (RISC) process is regarded as the key to actualize efficient organic light‐emitting diodes (OLEDs) with low efficiency roll‐off. Herein, a novel molecular design strategy is reported where a typical TADF material 10‐phenyl‐10H, 10′H‐spiro[acridine‐9, 9′‐anthracen]‐10′‐one (ACRSA) is utilized as a functional electron donor to design TADF materials of 2,4,6‐triphenyl‐1,3,5‐triazine(TRZ)‐p‐ACRSA and TRZ‐m‐ACRSA. It is unique that the intramolecular charge transfer of the ACRSA moiety and the intramolecular and through‐space intermolecular charge transfer between the TRZ and ACRSA moieties, provide a “multichannel” effect to enhance the rate of the reverse intersystem crossing process (krisc) exceeding 10−6 s−1. TADF OLEDs based on TRZ‐p‐ACRSA as an emitter show a maximum external quantum efficiency (EQE) of 28% with reduced efficiency roll‐off (EQEs of 27.5% and 22.1% at 100 and 1000 cd m−2, respectively). Yellow phosphorescent OLEDs utilizing TRZ‐p‐ACRSA as a host material show record‐high EQE of 25.5% and power efficiency of 115 lm W−1, while phosphorescent OLEDs based on TRZ‐m‐ACRSA show further lower efficiency roll‐off with EQEs of 25.2%, 24.3%, and 21.5% at 100, 1000, and 10 000 cd m−2, respectively.

Keywords: intersystem crossing; reverse intersystem; tadf; efficiency; trz acrsa

Journal Title: Advanced Functional Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.