LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AsP/InSe Van der Waals Tunneling Heterojunctions with Ultrahigh Reverse Rectification Ratio and High Photosensitivity

Photo from wikipedia

Van der Waals heterojunctions made of 2D materials offer competitive opportunities in designing and achieving multifunctional and high-performance electronic and optoelectronic devices. However, due to the significant reverse tunneling current… Click to show full abstract

Van der Waals heterojunctions made of 2D materials offer competitive opportunities in designing and achieving multifunctional and high-performance electronic and optoelectronic devices. However, due to the significant reverse tunneling current in such thin p–n junctions, a low rectification ratio along with a large reverse current is often inevitable for the heterojunctions. Here, a vertically stacked van der Waals heterojunction (vdWH) tunneling device is reported consisting of black arsenic phosphorus (AsP) and indium selenide (InSe), which shows a record high reverse rectification ratio exceeding 107 along with an unusual ultralow forward current below picoampere and a high current on/off ratio over 108 simultaneously at room temperature under the proper band alignment design of both the Schottky junction and the heterojunction. Therefore, the vdWH tunneling device can function as an ultrasensitive photodetector with an ultrahigh light on/off ratio of 1 × 107, a comparable responsivity of around 1 A W−1, and a high detectivity over 1 × 1012 Jones in the visible wavelength range. Furthermore, the device exhibits a clear photovoltaic effect and shows a spectral detection capability up to 1550 nm. The work sheds light on developing future electronic and optoelectronic multifunctional devices based on the van der Waals integration of 2D materials with designed band alignment.

Keywords: rectification ratio; van der; der waals; ratio

Journal Title: Advanced Functional Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.