LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Real‐Time Imaging of Nanoscale Redox Reactions over Bimetallic Nanoparticles

Photo from wikipedia

The catalytic performance of bimetallic nanoparticles (NPs) strongly depends on their structural and compositional changes under reaction conditions. At the fundamental level, these changes are driven by redox reactions that… Click to show full abstract

The catalytic performance of bimetallic nanoparticles (NPs) strongly depends on their structural and compositional changes under reaction conditions. At the fundamental level, these changes are driven by redox reactions that occur on the surface of the NPs. The degree of complexity in the redox reactions is further amplified in bimetallic NPs because both metals can have their own reactions with the reactant molecules, in addition to any synergistic effects between the metal nanocatalysts and their reducible oxides. Here, the gas phase oxidation and reduction reactions, and the oxidation of carbon monoxide (CO) over Pt–Ni rhombic dodecahedron NPs with segregated Pt frames and Pt–Ni alloy NPs are investigated using in situ gas cell transmission electron microscopy. The real‐time observations show that NiO shell formation and Pt segregation are two important features during the oxidation and reduction of Pt–Ni NPs, respectively. Moreover, the two types of NPs evolved in different ways. By combining high‐resolution imaging, mass spectroscopy, and modeling, it is shown that the evolution of NP morphology and composition during redox reactions plays an important role in controlling the catalytic activity of the NPs.

Keywords: imaging nanoscale; real time; bimetallic nanoparticles; redox reactions; time imaging

Journal Title: Advanced Functional Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.