LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrogen‐Bonded Polyimide/Metal‐Organic Framework Hybrid Membranes for Ultrafast Separations of Multiple Gas Pairs

Photo from wikipedia

Membranes have seen a growing role in mitigating the extensive energy used for gas separations. Further expanding their effectiveness in reducing the energy penalty requires a fast separation process via… Click to show full abstract

Membranes have seen a growing role in mitigating the extensive energy used for gas separations. Further expanding their effectiveness in reducing the energy penalty requires a fast separation process via a facile technique readily integrated with industrial membrane formation platforms, which has remained a challenge. Here, an ultrapermeable polyimide/metal‐organic framework (MOF) hybrid membrane is reported, enabling ultrafast gas separations for multiple applications (e.g., CO2 capture and hydrogen regeneration) while offering synthetic enhanced compatibility with the current membrane manufacturing processes. The membranes demonstrate a CO2 and H2 permeability of 2494 and 2932 Barrers, respectively, with a CO2/CH4, H2/CH4, and H2/N2 selectivity of 29.3, 34.4, and 23.8, respectively, considerably surpassing the current Robeson permeability–selectivity upper bounds. At a MOF loading of 55 wt%, the membranes display a record‐high 16‐fold enhancement of H2 permeability comparing with the neat polymer. With mild membrane processing conditions (e.g., a heating temperature less than 80 °C) and a performance continuously exceeding Robeson upper bounds for over 5300 h, the membranes exhibit enhanced compatibility with state‐of‐the‐art membrane manufacturing processes. This performance results from intimate interactions between the polymer and MOFs via extensive, direct hydrogen bonding. This design approach offers a new route to ultraproductive membrane materials for energy‐efficient gas separations.

Keywords: polyimide metal; membrane; hydrogen; metal organic; gas; organic framework

Journal Title: Advanced Functional Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.