LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mimicking Cellular Signaling Pathways within Synthetic Multicompartment Vesicles with Triggered Enzyme Activity and Induced Ion Channel Recruitment

Photo by robbie36 from unsplash

Subcellular compartmentalization of cells, a defining characteristic of eukaryotes, is fundamental for the fine tuning of internal processes and the responding to external stimuli. Reproducing and controlling such compartmentalized hierarchical… Click to show full abstract

Subcellular compartmentalization of cells, a defining characteristic of eukaryotes, is fundamental for the fine tuning of internal processes and the responding to external stimuli. Reproducing and controlling such compartmentalized hierarchical organization, responsiveness, and communication is important toward understanding biological systems and applying them to smart materials. Herein, a cellular signal transduction strategy (triggered release from subcompartments) is leveraged to develop responsive, purely artificial, polymeric multicompartment assemblies. Incorporation of responsive nanoparticles-loaded with enzymatic substrate or ion channels-as subcompartments inside micrometer-sized polymeric vesicles (polymersomes) allowed to conduct bioinspired signaling cascades. Response of these subcompartments to an externally added stimulus is achieved and studied by using confocal laser scanning microscopy (CLSM) coupled with in situ fluorescence correlation spectroscopy (FCS). Signal triggered activity of an enzymatic reaction is demonstrated in multicompartments through recombination of compartmentalized substrate and enzyme. In parallel, a two-step signaling cascade is achieved by triggering the recruitment of ion channels from inner subcompartments to the vesicles' membrane, inducing ion permeability, mimicking endosome-mediated insertion of internally stored channels. This design shows remarkable versatility, robustness, and controllability, demonstrating that multicompartment polymer-based assemblies offer an ideal scaffold for the development of complex cell-inspired responsive systems for applications in biosensing, catalysis, and medicine.

Keywords: signaling pathways; cellular signaling; activity; multicompartment; ion; mimicking cellular

Journal Title: Advanced Functional Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.