Graphene is regarded as the ultimate material for future flexible, high‐performance, and wearable electronics. Herein, a novel, robust, all‐green, highly reliable (yield ≥ 99%), and upscalable technology is reported for… Click to show full abstract
Graphene is regarded as the ultimate material for future flexible, high‐performance, and wearable electronics. Herein, a novel, robust, all‐green, highly reliable (yield ≥ 99%), and upscalable technology is reported for wearable applications comprising reduced graphene oxide (rGO) as the electroactive component in liquid‐gated transistors (LGTs). rGO is a formidable material for future flexible and wearable applications due to its easy processability, excellent surface reactivity, and large‐area coverage. A novel protocol is established toward the high‐yield fabrication of flexible rGO LGTs combining high robustness (>1.5 h of continuous operation) with state‐of‐the‐art performances, being similar to those of their rigid counterparts operated under liquid gating, including field‐effect mobility of ≈10−1 cm2 V−1 s−1 and transconductance of ≈25 µS. Permeable membranes have been proven crucial to operate flexible LGTs under mechanical stress with reduced amounts of solution (<20 µL). Our rGO LGTs are operated in artificial sweat exploiting two different layouts based on lateral‐flow paper fluidics. These approaches pave the road toward future real‐time tracking of perspiration via a simple and cost‐effective approach. The reported findings contribute to the robust and scalable production of novel graphene‐based flexible devices, whose features fulfill the requirements of wearable electronics.
               
Click one of the above tabs to view related content.