LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sensitive and Ultrabroadband Phototransistor Based on Two‐Dimensional Bi2O2Se Nanosheets

Photo by miracleday from unsplash

Bi2O2Se, a high‐mobility and air‐stable 2D material, has attracted substantial attention for application in integrated logic electronics and optoelectronics. However, achieving an overall high performance over a wide spectral range… Click to show full abstract

Bi2O2Se, a high‐mobility and air‐stable 2D material, has attracted substantial attention for application in integrated logic electronics and optoelectronics. However, achieving an overall high performance over a wide spectral range for Bi2O2Se‐based devices remains a challenge. A broadband phototransistor with high photoresponsivity (R) is reported that comprises high‐quality large‐area (≈180 µm) Bi2O2Se nanosheets synthesized via a modified chemical vapor deposition method with a face‐down configuration. The device covers the ultraviolet (UV), visible (Vis), and near‐infrared (NIR) wavelength ranges (360–1800 nm) at room temperature, exhibiting a maximum R of 108 696 A W−1 at 360 nm. Upon illumination at 405 nm, the external quantum efficiency, R, and detectivity (D*) of the device reach up to 1.5 × 107%, 50055 A W−1, and 8.2 × 1012 Jones, respectively, which is attributable to a combination of the photogating, photovoltaic, and photothermal effects. The devices reach a −3 dB bandwidth of 5.4 kHz, accounting for a fast rise time (τrise) of 32 µs. The high sensitivity, fast response time, and environmental stability achieved simultaneously in these 2D Bi2O2Se phototransistors are promising for high‐quality UV and IR imaging applications.

Keywords: bi2o2se nanosheets; bi2o2se; sensitive ultrabroadband; ultrabroadband phototransistor; phototransistor based

Journal Title: Advanced Functional Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.