LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optically Modulated Threshold Switching in Core–Shell Quantum Dot Based Memristive Device

Photo from wikipedia

The threshold switching (TS) phenomenon in memristors has drawn great attention for its versatile applications in selectors, artificial neurons, true random number generators, and electronic integrations. The transition between nonvolatile… Click to show full abstract

The threshold switching (TS) phenomenon in memristors has drawn great attention for its versatile applications in selectors, artificial neurons, true random number generators, and electronic integrations. The transition between nonvolatile resistive switching and volatile TS modes can be realized by doping, varying annealing and voltage sweeping conditions, or imposing different compliance current. Here, a strategy is reported to achieve such transition by the noninvasive UV light stimulus based on InP/ZnS quantum dot (QD) memristor. The core–shell InP/ZnS QDs with quasi‐type II band alignment ensures photoexcited electrons localized in InP core, photoexcited hole state distributed in the outer shell, and subsequent lifetime controlling of conductive filament under light irradiation. Systematic mechanism investigations indicate that UV photogenerated holes are accumulated on the surface of the QD film, which is consistent with rapid transfer of photogenerated holes in the core–shell InP/ZnS structure. Based on the light‐modulated effect, a reconfigurable 9 × 9 visual data storage array with a key pattern and a simple leaky integrate‐and‐fire circuit are constructed. These results suggest the potential of direct optical modulation of memory mode through energy band engineering, leading to future optoelectronic and electronic device for the implementation of neuromorphic visual system and artificial neural networks.

Keywords: threshold switching; quantum dot; core; core shell

Journal Title: Advanced Functional Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.