LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wireless Manipulation of Magnetic/Piezoelectric Micromotors for Precise Neural Stem‐Like Cell Stimulation

Photo from wikipedia

Precise neural electrical stimulation, which is a means of promoting neuronal regeneration, is a promising solution for patients with neurotrauma and neurodegenerative diseases. In this study, wirelessly controllable targeted motion… Click to show full abstract

Precise neural electrical stimulation, which is a means of promoting neuronal regeneration, is a promising solution for patients with neurotrauma and neurodegenerative diseases. In this study, wirelessly controllable targeted motion and precise stimulation at the single‐cell level using S.platensis@Fe3O4@tBaTiO3 micromotors are successfully demonstrated for the first time. A highly versatile and multifunctional biohybrid soft micromotor is fabricated via the integration of S.platensis with magnetic Fe3O4 nanoparticles and piezoelectric BaTiO3 nanoparticles. The results show that this micromotor system can achieve navigation in a highly controllable manner under a low‐strength rotating magnetic field. The as‐developed system can achieve single‐cell targeted motion and then precisely induce the differentiation of the targeted neural stem‐like cell by converting ultrasonic energy to an electrical signal in situ owing to the piezoelectric effect. This new approach toward the high‐precision stimulation of neural stem‐like cells opens up new applications for micromotors and has excellent potential for precise neuronal regenerative therapies.

Keywords: stem like; neural stem; cell; precise neural; stimulation

Journal Title: Advanced Functional Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.