LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Silica Nanodepletors: Targeting and Clearing Alzheimer's β‐Amyloid Plaques

Photo by geraninmo from unsplash

Abnormal accumulation of β‐amyloid (Aβ) peptide aggregates in the brain is a major hallmark of Alzheimer's disease (AD). Aβ aggregates interfere with neuronal communications, ultimately causing neuronal damage and brain… Click to show full abstract

Abnormal accumulation of β‐amyloid (Aβ) peptide aggregates in the brain is a major hallmark of Alzheimer's disease (AD). Aβ aggregates interfere with neuronal communications, ultimately causing neuronal damage and brain atrophy. Much effort has been made to develop AD treatments that suppress Aβ aggregate formation, thereby attenuating Aβ‐induced neurotoxicity. Here, the design of Aβ nanodepletors consisting of ultralarge mesoporous silica nanostructures and anti‐Aβ single‐chain variable fragments, with the goal of targeting and eliminating aggregative Aβ monomers, is reported. The Aβ nanodepletors impart a notable decline in Aβ aggregate formation, resulting in significant mitigation of Aβ‐induced neurotoxicity in vitro. Furthermore, stereotaxic injections of Aβ nanodepletors into the brain of an AD mouse model system successfully suppress Aβ plaque formation in vivo up to ≈30%, suggesting that Aβ nanodepletors can serve as a promising antiamylodoisis material.

Keywords: amyloid; silica nanodepletors; clearing alzheimer; targeting clearing; alzheimer; nanodepletors targeting

Journal Title: Advanced Functional Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.