LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wearable Energy Generating and Storing Textile Based on Carbon Nanotube Yarns

Photo from wikipedia

The challenges of textiles that can generate and store energy simultaneously for wearable devices are to fabricate yarns that generate electrical energy when stretched, yarns that store this electrical energy,… Click to show full abstract

The challenges of textiles that can generate and store energy simultaneously for wearable devices are to fabricate yarns that generate electrical energy when stretched, yarns that store this electrical energy, and textile geometries that facilitate these functions. To address these challenges, this research incorporates highly stretchable electrochemical yarn harvesters, where available mechanical strains are large and electrochemical energy storing yarns are achieved by weaving. The solid‐state yarn harvester provides a peak power of 5.3 W kg−1 for carbon nanotubes. The solid‐state yarn supercapacitor provides stable performance when dynamically deformed by bending and stretching, for example. A textile configuration that consists of harvesters, supercapacitors, and a Schottky diode is produced and stores as much electrical energy as is needed by a serial or parallel connection of the harvesters or supercapacitors. This textile can be applied as a power source for health care devices or other wearable devices and be self‐powered sensors for detecting human motion.

Keywords: energy; wearable energy; carbon; electrical energy; energy generating; textile

Journal Title: Advanced Functional Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.