LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent Advances and Promise of MXene‐Based Nanostructures for High‐Performance Metal Ion Batteries

Photo by viazavier from unsplash

MXenes, a large family of 2D transition metal carbides or carbonitrides, possessing exceptional conductivity in the crystal core and ample functional groups (e.g., OH, F, O) on their surface, low… Click to show full abstract

MXenes, a large family of 2D transition metal carbides or carbonitrides, possessing exceptional conductivity in the crystal core and ample functional groups (e.g., OH, F, O) on their surface, low energy barriers for metal ion diffusion, and large interlayer spaces for ion intercalation, are opening up various intriguing opportunities to construct advanced MXene‐based nanostructures for different‐type metal ion batteries (MIBs) with remarkable energy density and power density. Herein, this work summarizes the recent advances in MXene‐based nanostructures for high‐performance MIBs from lithium ion batteries to non‐lithium (Na+, K+, Mg2+, Zn2+, Ca2+) ion batteries, in which the unique roles of MXenes as active materials, conductive substrates, and even current collectors are highlighted. Furthermore, the loaded model, encapsulated model, and sandwiched model are clarified in detail for MXene‐based hybrids with different dimensional (0D, 1D, and 2D) active materials, and each structural model is well exampled for different MIBs with special emphasis of synergistic effects and strong interaction interfaces between MXene and active materials. Finally, the existing challenges and perspectives of MXene‐based nanostructures are briefly discussed for MIBs.

Keywords: based nanostructures; metal ion; mxene based; ion batteries; ion

Journal Title: Advanced Functional Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.