LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Graphene‐Assisted Epitaxy of Nitrogen Lattice Polarity GaN Films on Non‐Polar Sapphire Substrates for Green Light Emitting Diodes

Photo by ahmedafrah from unsplash

Lattice polarity is a key point for hexagonal semiconductors such as GaN. Unfortunately, only Ga‐polarity GaN have been achieved on graphene till now. Here, the epitaxy of high quality nitrogen‐polarity… Click to show full abstract

Lattice polarity is a key point for hexagonal semiconductors such as GaN. Unfortunately, only Ga‐polarity GaN have been achieved on graphene till now. Here, the epitaxy of high quality nitrogen‐polarity GaN films on transferred graphene on non‐polar sapphire substrates by molecular beam epitaxy is reported. This success is achieved through atomic nitrogen irradiation, where CN bonds are formed in graphene and provide nucleation sites for GaN and leading to N‐polarity GaN epitaxy. The N‐polarity characteristics are confirmed by chemical etching and transmission electron microscopy measurement. Due to the higher growth temperature of InGaN at N‐polarity than that at Ga‐polarity, green light emitting diodes are fabricated on the graphene‐assisted substrate, where a large redshift of emission wavelength is observed. These results open a new avenue for the polarity modulation of III‐nitride films based on 2D materials, and also pave the way for potential application in longer wavelength light emitting devices.

Keywords: polarity gan; gan films; nitrogen; light emitting; lattice polarity; polarity

Journal Title: Advanced Functional Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.