LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pseudocapacitive Trimetal Fe0.8CoMnO4 Nanoparticles@Carbon Nanofibers as High‐Performance Sodium Storage Anode with Self‐Supported Mechanism

Photo by priscilladupreez from unsplash

Trimetal Fe0.8CoMnO4 (FCMO) nanocrystals with a diameter of about 50 nm perfectly embedded in N doped‐carbon composite nanofibers (denoted as FCMO@C) are successfully prepared through integrating double‐nozzle electrospinning with a… Click to show full abstract

Trimetal Fe0.8CoMnO4 (FCMO) nanocrystals with a diameter of about 50 nm perfectly embedded in N doped‐carbon composite nanofibers (denoted as FCMO@C) are successfully prepared through integrating double‐nozzle electrospinning with a drying and calcination process. The as‐prepared FCMO@C nanofibers maintain a high reversible capacity of 420 mAh g−1 and about 90% capacity retention after 200 cycles at 0.1 A g−1. For a long‐term cycle, the FCMO@C electrode exhibits excellent cycling stability (87% high capacity retention at 1 A g−1 after 950 cycles). Kinetic analysis demonstrates that the electrochemical characteristics of the FCMO@C corresponds to the pseudocapacitive approach in charge storage as an anode for sodium ion batteries, which dominantly attributes the credit to FCMO nanocrystals to shorten the migration distance of Na+ ions and the nitrogen‐doped carbon skeleton to enhance the electronic transmission and favorably depress the volume expansion during the repeated insertion/extraction of Na+ ions. More significantly, a self‐supported mechanism via continuous electrochemical redox reaction of Fe, Co, and Mn can effectively relieve the volume change during charge and discharge. Therefore, this work can provide a new avenue to improve the sodium storage performance of the oxide anode materials.

Keywords: storage; fe0 8comno4; storage anode; carbon; trimetal fe0; sodium

Journal Title: Advanced Functional Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.