LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Use of Ferritin Capped Mesoporous Silica Nanoparticles for Redox and pH Triggered Drug Release In Vitro and In Vivo

Photo from wikipedia

Mesoporous silica nanoparticles (MSNs) functionalized with redox‐sensitive or pH‐sensitive nanovalves for doxorubicin delivery and release by using recombinant human H chain ferritin (HFn) as a cap have been designed and… Click to show full abstract

Mesoporous silica nanoparticles (MSNs) functionalized with redox‐sensitive or pH‐sensitive nanovalves for doxorubicin delivery and release by using recombinant human H chain ferritin (HFn) as a cap have been designed and fabricated. In both cases, transmission electron microscope observatory, dynamic light scattering change, Fourier transform infrared spectra examination, thermogravimetric analysis show that HFn can be chemically bonded to MSNs while retaining its ability to target transferrin receptor 1 (TfR1). Cargo loading and release studies demonstrate that HFn is an efficient capping agent, blocking the pores of MSN preventing cargo molecules from diffusing out, and is responsive to redox stimuli or pH changes. More importantly, HFn can not only cap the MSNs, but also enables targeted cargo delivery to malignant cells by binding to the TfR1 that has been overexpressed in various tumors, which can be reflected by the cell viability and fluorescence microscope analysis results comparing with cyclodextrin as the capping agent and TfR1 blocking assay. The in vivo study reveals the excellent efficacy of doxorubicin loaded and HFn capped MSNs on suppression of tumor growth. The new developed drug delivery system features mutually benefit and mutually support, providing strategy for achieving specific‐site therapeutics delivery systems.

Keywords: mesoporous silica; release; delivery; ferritin; silica nanoparticles

Journal Title: Advanced Functional Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.