LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High‐Performance Metal‐Free Nanosheets Array Electrocatalyst for Oxygen Evolution Reaction in Acid

Photo from wikipedia

Development of low cost electrocatalysts with outstanding catalytic activity and stability for oxygen evolution reaction (OER) in acid is a major challenge to produce hydrogen energy from water splitting. Herein,… Click to show full abstract

Development of low cost electrocatalysts with outstanding catalytic activity and stability for oxygen evolution reaction (OER) in acid is a major challenge to produce hydrogen energy from water splitting. Herein, a novel metal‐free electrocatalyst consisting of a oxygen‐functionalized electrochemically exfoliated graphene (OEEG) nanosheets array is reported. Benefitting from a vertically aligned arrays structure and introducing oxygen functional groups, the metal‐free OEEG nanosheets array exhibits superior electrocatalytic activity and stability toward OER with a low overpotential of 334 mV at 10 mA cm−2 in acidic electrolyte. Such a high OER performance is thus far the best among all previously reported metal‐free carbon‐based materials, and even superior to commercial Ir/C catalysts (420 mV at 10 mA cm−2) in acid. Characterization results and electrochemical measurements identify the COOH species in the OEEG acting as active sites for acidic OER, which is further supported by atomic‐scale scanning transmission electron microscopy imaging and electron energy‐loss spectroscopy. Density functional theory calculations reveal that the reaction pathway of dual sites that is mixed by zigzag and armchair edges (COOH‐zig‐corner) is better than the pathway of single site.

Keywords: nanosheets array; oxygen evolution; metal free; evolution reaction

Journal Title: Advanced Functional Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.