LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dual Interfacial Modification Engineering with 2D MXene Quantum Dots and Copper Sulphide Nanocrystals Enabled High‐Performance Perovskite Solar Cells

Photo from wikipedia

The performance of perovskite solar cells (PSCs) strongly depends on the electron transport layer (ETL), perovskite absorber, hole transport layer (HTL), and their interfaces. Herein, the first approach to utilize… Click to show full abstract

The performance of perovskite solar cells (PSCs) strongly depends on the electron transport layer (ETL), perovskite absorber, hole transport layer (HTL), and their interfaces. Herein, the first approach to utilize ultrathin 2D titanium‐carbide MXenes (Ti3C2Tx quantum dots, TQD) by engineering the perovskite/TiO2 ETL interface and perovskite absorber and introducing Cu1.8S nanocrystals to perfect the Spiro‐OMeTAD HTL is represented. A significant hysteresis‐free power conversion efficiency improvement from 18.31% to 21.64% of PSCs is achieved after modifications with the enhanced short‐circuit current density, open‐circuit voltages, and fill factor. Various advanced characterizations, including femtosecond transient absorption spectroscopy, electrochemical impedance spectroscopy, and ultraviolet photoelectron spectroscopy, elucidate that the TQD/Cu1.8S significantly contribute to the improved crystalline quality of the perovskite film with its large grain size and improved electron/holes extraction efficiencies at perovskite/ETL and perovskite/HTL interfaces. Furthermore, the long‐time ambient and light stability of PSCs are largely boosted through the TQD and/or Cu1.8S nanocrystals doping, originating from the better crystallization of perovskite, suppressing the film aggregation and crystallization of HTL, and inhibiting the ultraviolet‐induced photocatalysis of the ETL. The findings highlight the TQD and Cu1.8S can act as a superfast electrons and holes tunnel for the optoelectronic devices.

Keywords: perovskite; performance perovskite; spectroscopy; perovskite solar; quantum dots; solar cells

Journal Title: Advanced Functional Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.