LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

pH/Cathepsin B Hierarchical‐Responsive Nanoconjugates for Enhanced Tumor Penetration and Chemo‐Immunotherapy

Photo by nci from unsplash

An ideal cancer nanomedicine should precisely deliver therapeutics to its intracellular target within tumor cells. However, the multiple biological barriers seriously hinder their delivery efficiency, leading to unsatisfactory therapeutic outcome.… Click to show full abstract

An ideal cancer nanomedicine should precisely deliver therapeutics to its intracellular target within tumor cells. However, the multiple biological barriers seriously hinder their delivery efficiency, leading to unsatisfactory therapeutic outcome. Herein, pH/cathepsin B hierarchical‐responsive nanoconjugates (HRNs) are reported to overcome these barriers by sequentially responding to extra‐ and intracellular stimuli in solid tumors for programmed delivery of docetaxel (DTX). The HRNs have stable nanostructures (≈40 nm) in blood circulation for efficient tumor accumulation, while the tumor extracellular acidity induces the rapid dissociation of HRNs into polymer conjugates (≈5 nm), facilitating the deep tumor penetration and cellular internalization. After being trapped into the lysosomes, the conjugates are cleaved by cathepsin B to release bioactive DTX into cytoplasm and inhibit cell proliferation. In addition to the direct inhibition effect, HRNs can trigger the in vivo antitumor immune responses via the immunogenic modulation of tumor cells, activation of dendritic cells (DCs), and generation of cytotoxic T‐cell responses. By employing a combination with α‐PD‐1 (programmed cell death 1) therapy, synergistic antitumor efficacy is achieved in B16 expressing ovalbumin (B16OVA) tumor model. Hence, this strategy demonstrates high efficiency for precise intracellular delivery of chemotherapeutics and provides a potential clinical candidate for cancer chemo‐immunotherapy.

Keywords: tumor; chemo immunotherapy; cathepsin hierarchical; responsive nanoconjugates; tumor penetration; hierarchical responsive

Journal Title: Advanced Functional Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.