LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reentrant Spin Glass and Large Coercive Field Observed in a Spin Integer Dimerized Honeycomb Lattice

Photo by fiercelupus from unsplash

2D magnetic materials with dimerized honeycomb lattices can be treated as mixed‐spin square lattices, in which a quantum phase transition may occur to realize the Bose–Einstein condensation of magnons under… Click to show full abstract

2D magnetic materials with dimerized honeycomb lattices can be treated as mixed‐spin square lattices, in which a quantum phase transition may occur to realize the Bose–Einstein condensation of magnons under reachable experimental conditions. However, this has never been successfully realized with integer spin centers. Herein, a spin integer (S = 2) dimerized honeycomb lattice in an iron(II)‐azido compound [Fe(4‐etpy)2(N3)2]n (FEN, 4‐etpy = 4‐ethylpyridine) is realized. Morphology characterization by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy spectroscopies show that the thinnest place of the sample is ≈13 nm, which is equal to ten layers of the compound. In contrast to the common magnetic properties of long‐range magnetic ordering, Mössbauer and polarized neutron scattering studies reveal that FEN exhibits a reentrant spin glass behavior owing to competing ferro‐ and antiferromagnetic exchange‐coupling interactions within the lattice. Two spin glass phases with disparate canting angles are characterized at 39 and 28 K, respectively. By using Curély's model, two exchange‐coupling constants (J1 = +35.8 cm−1 and J2 = −3.7 cm−1) can be simulated. Moreover, a very large coercive field of ≈1.9 Tesla is observed at 2 K, making FEN a “very hard” van der Waals 2D magnetic material.

Keywords: spin glass; microscopy; dimerized honeycomb; integer

Journal Title: Advanced Functional Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.