LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combined Effect of Temperature Induced Strain and Oxygen Vacancy on Metal‐Insulator Transition of VO 2 Colloidal Particles

Photo from wikipedia

Vanadium dioxide (VO2) is a promising material in the development of thermal and electrically sensitive devices due to its first order reversible metal-insulator transition (MIT) at 68 °C. Such high… Click to show full abstract

Vanadium dioxide (VO2) is a promising material in the development of thermal and electrically sensitive devices due to its first order reversible metal-insulator transition (MIT) at 68 °C. Such high MIT temperature (TC) largely restricts its widespread application which could be enabled if a straightforward tuning mechanism were present. Here this need is addressed through a facile approach that uses the combined effects of temperature induced strain and oxygen vacancies in bulk VO2 colloidal particles. A simple thermal annealing process under varying vacuum is used to achieve phase transformation of metastable VO2(A) into VO2(M2), (M2+M3), (M1) and higher valence V6O13 phases. During this process, distinct multiple phase transitions including increased as well as suppressed TC are observed with respect to the annealing temperature and varied amount of oxygen vacancies respectively. The latent heat of phase transition is also significantly improved upon thermal annealing by increasing the crystallinity of the samples. This work not only offers a facile route for selective phase transformation of VO2 as well as to manipulate the phase transition temperature, but also contributes significantly to the understanding of the role played by oxygen vacancies and temperature induced stress on MIT which is essential for VO2 based applications.

Keywords: oxygen; phase; temperature; transition; temperature induced; metal insulator

Journal Title: Advanced Functional Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.